flexible sampling of
discrete data correlations
without the marginal distributions

Alfredo Kalaitzis, Ricardo Silva

University College London, CSML

November 29, 2013
Learning the joint dependence of discrete variables is a fundamental problem in machine learning & statistics.

- Prediction
- Clustering
- Dimensionality reduction, etc.

Ways of constructing discrete distributions:
- Contingency tables (if small dimensional)
- Sparse structures
- (Hierarchical) LVMs
- Copulas
Copulas

\[F(y_1, y_2) = F\left(F_1^{-1}(F_1(y_1)), F_2^{-1}(F_2(y_2)) \right), \]

where

\[C(\cdot, \cdot) \equiv F\left(F_1^{-1}(\cdot), F_2^{-1}(\cdot) \right) \]

is the copula of \(F \).

- “←” reveals a modular approach to constructing joint distributions.
- Combining univariate marginals through a parametric distribution family, e.g. Gaussian.
- Complements graphical models and other modular parameterizations of joint distributions.
The Gaussian copula

Gaussian copula ("←"):

1. \(z^{(i)} \sim \mathcal{N}_p(0, \mathbf{C}) \) and \(u_j^{(i)} = \Phi(z_j^{(i)}) \), thus \(u_j^{(i)} \sim \mathcal{U}[0, 1] \)

2. Given univariate CDFs, \(\{F_j\}_{1..p} \), define \(y_j^{(i)} = F_j^{-1}(u_j^{(i)}) \) to construct a model for the joint CDF of \(y \).

3. Think of \(Z \) is a continuous (augmented) representation of \(Y \).
What about CDFs of **discrete** data?

- **Bayesian inference** for C given **discrete** data Y:

 $$p(C, \theta_F | Y) \propto p_{GC}(Y|C, \theta_F) \pi(C, \theta_F)$$

 - p_{GC}: PMF of a Gaussian copula and marginals given by θ_F.
 - **But**, transforming **discrete** CDFs to PMFs is generally intractable due to jumps in the CDF of the **discrete** Y_j.
The extended rank likelihood (XRL)

- **Jumps** induce hard **constraints**:
 \[y_j^{(i)} < y_j^{(i')} \implies z_j^{(i)} < z_j^{(i')} \]

- (Hoff, 07) defines the event \(Z \in D \).
 \[D \equiv \{ Z \in \mathbb{R}^{n \times p} : Z \text{ satisfies all constraints} \} \]

- \(p_{GC}(Y \mid C, \theta_F) = p_{GC}(Z \in D, Y \mid C, \theta_F) = p_{GC}(Y \mid Z \in D, C, \theta_F) p(Z \in D \mid C) \)

- Now inference on \(C \) can be done by marginalizing over \(Z \):
 \[p(C, Z \mid Y) \propto I(Z \in D) \mathcal{N}(Z \mid C) \pi(C). \]

 - **e.g.** by Gibbs sampling from the **truncated Gaussian** and \(p(C \mid Z) \) (an \(\mathcal{IW} \) density) and throwing away the \(Z \) sample.

- **Note**: \(C \) is no longer estimated based on \(Y \) or \(\theta_F \), but on the probability of an **event** that is a **superset** of observing the ranks.
XRL for *semiparametric* copula estimation

- XRL introduces a **summary statistic** of the data, independent of nuisance parameters θ_F.
 - The XRL also known as a *generalized* marginal likelihood.
- **No assumptions** on $\{F_j\}_{1..p}$ required!
 - Much simpler to sample the XRL than the joint likelihood.
 - Avoids any “entanglements” between θ_F and C.
- **Extensibility**: further structure can be imposed on C with appropriate priors.
- Hard constraints & univariate Gibbs sampling of $z_j^{(i)}$ can result in **slow mixing**.
 - Can we do better?
Exact HMC for truncated multivariate Gaussians

- Don’t sample each $Z_{i,j} | Z_{i,j}$, (univariate truncated Gaussians).
- Instead, sample $Z_{:,j} | Z_{:,j}$ jointly using a constrained HMC sampler (Pakman et al, 2012)
 - Shown to mix better than Gibbs sampling.

- Bottleneck in computing $O(n^2)$ bouncing times.
- We reduce this to $O(n)$ in practice.
 Searching for the Hough envelope

- The **special structure** of hard constraints: each component of the HMC particle has a sinusoid evolution:
 \[x_i(t) = \mu_i + a_i \sin(t) + b_i \cos(t) \]
- Recall: \(Y_{L1,j} < Y_{L2,j} \) implies \(Z_{L1,j} < Z_{L2,j} \),
Application on the Bayesian Gaussian copula factor model

<table>
<thead>
<tr>
<th>Figure</th>
<th>vars</th>
<th>factors</th>
<th>ordinal levels</th>
<th>elapsed (mins):</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>20</td>
<td>5</td>
<td>2</td>
<td>115</td>
</tr>
<tr>
<td>(b)</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>(c)</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>203</td>
</tr>
</tbody>
</table>

1000 observations

![Graphs](image1.png) ![Graphs](image2.png) ![Graphs](image3.png)
Thank you

Research supported by EPSRC grant EP/J013293/1.