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1. Introduction 1.1 Notation and Basic Definitions

Classifier
A function that maps instances x from an instance space X to classes y from an
output space Y . We will assume binary classifiers, that is, Y = {0,1}.

Model
A function m : X !R that maps examples to real numbers (scores) on an
unspecified scale. We use the convention that higher scores express a stronger
belief that the instance is of class 1 (negative), which means that thresholds
increase along ROC curves.

Probability estimator
A function m : X ! [0,1] that maps examples to estimates p̂(1|x) of the
probability of example x to be of class 1. Given a predicted score s = m(x) and a
threshold t , the instance x is classified in class 1 if s > t , and in class 0
otherwise.
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1. Introduction 1.1 Notation and Basic Definitions

True/false positive rate at threshold t

F

k

(t ) =
Z

t

°1
f

k

(s)d s = P (s ∑ t |k)

where f

k

(s) is the (true) score density of class k 2 {0,1} points.

Accuracy, error rate and predicted positive rate

Acc(t ) =ºF0(t )+ (1°º)(1°F1(t ))

Err(t ) =º(1°F0(t ))+ (1°º)F1(t )

R(t ) =ºF0(t )+ (1°º)F1(t )

where º is the proportion of positives.
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1. Introduction 1.1 Notation and Basic Definitions

ROC curve for scoring classifiers
The ROC curve is defined as a plot of F1(t ) on the x-axis against F0(t ) on the
y-axis, with both quantities monotonically non-decreasing with increasing t

(remember that scores increase with p̂(1|x) and 1 stands for the negative class).
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Figure: Empirical ROC curve arising from the test labels (0,0,0,1,1,0,1,0,1,1) with
increasing scores (0.13,0.25,0.34,0.45,0.53,0.62,0.71,0.83,0.91,0.95). The dashed line
indicates the convex hull which arises from considering optimal thresholds only.
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1. Introduction 1.1 Notation and Basic Definitions

AUC

The Area Under the ROC curve (AUC) is defined as:

AUC ,
Z1

0
F0dF1 =

Z+1

°1
F0(s) f1(s)d s

AUC estimates the probability that a random class 1 example receives a higher
score than a random class 0 example, and as such is a measure of ranking
performance rather than classification performance.

Brier score for probability estimators

BS ,º

Z1

0
s

2
f0(s)d s + (1°º)

Z1

0
(1° s)2

f1(s)d s

The Brier score is a proper scoring rule (it is minimised by the true probabilities).
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1. Introduction 1.2 Operating Conditions and Expected Loss

Misclassification costs and skew
c

k

∏ 0,k = 0,1 is the cost of misclassifying an example of true class k.
b = c0 + c1 is the cost magnitude (b = 2 ensures that loss is commensurate with
error rate). c = c0/b is the cost proportion.

Alternatively, c can be interpreted as a change in class distribution from º to
z = cº

cº+(1°c)(1°º) . We will often refer to c simply as skew.

Loss at threshold t and skew c

Q(t ;c) , 2{cº(1°F0(t ))+ (1° c)(1°º)F1(t )}.

Expected loss
Given a threshold choice method T and a probability density function over skews
w , expected loss is defined as:

L

c

,
Z1

0
Q(T (c);c)w(c)dc

Peter Flach (University of Bristol) Reinterpreting common evaluation metrics in classification UCL, 17 October 2014 10 / 42



1. Introduction 1.2 Operating Conditions and Expected Loss

Quiz

You have trained a classifier (say naive Bayes, or a decision tree) on a two-class
data set with the default threshold (0.5 on the posterior).

You are now told that in the deployment context the skew is c relative to the
training context. What do you do?

t You keep the threshold at 0.5.

t You set the threshold at c.

t You set the threshold such that the predicted positive rate is c.

t You estimate the optimal threshold for skew c.

t None of the above.
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2. A Variety of Cost Curves
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2. A Variety of Cost Curves 2.1 Drummond and Holte’s Cost Plots
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Cost plots

1 plot loss Q against operating condition c, here shown for fixed
thresholds (yielding a cost line for each operating point) or optimal thresholds
(yielding the lower envelope of cost lines). The area under the lower envelope is
the expected loss for optimal thresholds assuming uniform skews.

1C. Drummond and R. C. Holte. Cost curves: an improved method for visualizing classifier performance.
Machine Learning, 65(1):95–130, 2006
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2. A Variety of Cost Curves 2.2 Thresholding Probability Estimators

The Brier curve

If a probability estimator is trained on a particular class distribution and we want
to adapt it to a different skew c it makes sense to set the threshold equal to c, as
this would be optimal for the true posterior probability.a

Plotting loss against c results in the Brier curve, the area underneath which is
the Brier score. What this means is that – if we “trust” the probability estimates –
expected loss over uniform c is equal to the Brier score.

The Brier curve alternates between following a given cost line corresponding to
the ROC operating point, and jumping to a different cost line once c exceeds the
score of the next test instance.

aCharles Elkan. The foundations of cost-sensitive searning.
In Proceedings of the Seventeenth International Conference on Artificial Intelligence (IJCAI-01),
pages 973–978, San Francisco, CA, 2001
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2. A Variety of Cost Curves 2.2 Thresholding Probability Estimators

Example Brier curve
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Figure: (Left) ROC curve arising from the test labels (0,0,0,1,1,0,1,0,1,1) with scores
(0.13,0.25,0.34,0.45,0.53,0.62,0.71,0.83,0.91,0.95).
(Right) The Brier curve often jumps to non-optimal cost lines. The area under the Brier
curve is the Brier score.
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2. A Variety of Cost Curves 2.2 Thresholding Probability Estimators

Using the convex hull
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Figure: (Left) Convex ROC curve arising from the test labels (0,0,0,1,1,0,1,0,1,1) with
scores (0.2,0.2,0.2,0.43,0.43,0.43,0.43,0.43,0.75,0.75).
(Right) The Brier curve gets closer to the lower envelope, so this model has lower
expected loss. It can be further reduced through calibration.
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2. A Variety of Cost Curves 2.2 Thresholding Probability Estimators

Calibrated scores
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Figure: (Left) Convex ROC curve arising from the test labels (0,0,0,1,1,0,1,0,1,1) with
calibrated scores (0.0,0.0,0.0,0.6,0.6,0.6,0.6,0.6,1.0,1.0).
(Right) The Brier curve coincides with the lower envelope, indicating that this model’s
loss cannot be further reduced.
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2. A Variety of Cost Curves 2.2 Thresholding Probability Estimators

A realistic exampleBrier Curves: A New Cost-Based Visualisation of ClassiÞer Performance
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Figure 2. The top curve is the Brier curve of the classiÞer from
Example1, depicting the loss if the decision threshold is set equal
to the cost proportionc. The two discontinuous curves below are
BC0 andBC1, respectively. The cost curve is shown as a thick
dashed line. We can see that the probabilistic threshold choice
method is suboptimal betweenc = 0.15 andc = 0.90.

As a more realistic example, Figure3 shows the Brier
curves of a J48 model trained in Weka (Witten & Frank,
2005) on the credit rating dataset from the UCI repository
(Frank & Asuncion, 2010) with a 50%-50% train-test split.
The classiÞer on the top plots is J48 with default parameters
(pruning enabled, Laplace correction disabled), while the
bottom classiÞer is J48 without pruning but with Laplace
smoothing. We can clearly see the overÞtting of the un-
pruned tree, as it shows considerable difference between
the (good) training set curve and the (bad) test set curve.
We can also see the effect of the Laplace correction, which
deliberately sacriÞces training set performance on extreme
cost proportions in the hope of better generalisation perfor-
mance. On the test set, we see that estimated probabilities
are well-calibrated for high cost proportions but not for low
ones.

4. The Area under the Brier Curve is the
Brier Score

Since the Brier curve plots loss against operating condition,
the area under it is expected loss, averaged over the whole
operating range. Let us concentrate Þrst on cost proportion
as operating condition. The expected loss is deÞned as

Lc !
! 1

0
BCc(c)dc =

! 1

0
Qc(c;c)dc

=
! 1

0
2{ c�0(1! F0(c)) + ( 1! c)�1F1(c)} dc (12)

We then have the following result.

Theorem 1. The area under the Brier curve for cost pro-
portions is equal to the Brier score.

Proof. We haveBS = �0BS0+ �1BS1. Using integration by

! !
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Figure 3. Brier curves and cost curves for two different J48 clas-
siÞers evaluated on training and test sets both sampled from the
credit rating UCI dataset. Top left: Pruned tree on training set
(AUC: 0.937,AUCH: 0.937,BS: 0.068). Top right: Pruned tree
on test set (AUC: 0.887,AUCH: 0.894,BS: 0.126). Bottom left:
Unpruned tree on training set (AUC: 0.985,AUCH: 0.988,BS:
0.042). Bottom right: Unpruned tree on test set (AUC: 0.893,
AUCH: 0.904,BS: 0.126).

parts, we have

BS0 =
! 1

0
s2 f0(s)ds =

"
s2F0(s)

#1
s= 0 !

! 1

0
2sF0(s)ds

= 1!
! 1

0
2sF0(s)ds =

! 1

0
2sds !

! 1

0
2sF0(s)ds

Similarly for the negative class:

BS1 =
! 1

0
(1! s)2 f1(s)ds

=
"
(1! s)2F1(s)

#1
s= 0 +

! 1

0
2(1! s)F1(s)ds

=
! 1

0
2(1! s)F1(s)ds

Taking their weighted average, we obtain

BS = �0BS0 + �1BS1

=
! 1

0
{ �0(2s ! 2sF0(s)) + �12(1! s)F1(s)} ds

which, after reordering of terms and change of variable, is
the same expression as Eq. (12).

The proof for the empirical case, where the cumulative dis-
tribution functionsF0 and F1 are piecewise constant and
discontinuous, is similar but more involved notationally.

Figure: Top: pruned
decision tree, bottom:
unpruned tree. Left:
training set, right: test
set.
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2. A Variety of Cost Curves 2.3 Thresholding Rankers

From ROC curve to ROL curve I

Plotting accuracy against rate for balanced classes (º= 1/2)
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2. A Variety of Cost Curves 2.3 Thresholding Rankers

From ROC curve to ROL curve II
Expected loss for uniform rate and balanced classes is
(1°AUC)/2+1/4 = (1°2AUC)/4+1/2

The expected loss for uniform rate is (1-AUC)/2+1/4 = (1-2AUC)/4+1/2.
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2. A Variety of Cost Curves 2.3 Thresholding Rankers

From ROC curve to ROL curve III

More negatives than positives (º< 1/2)
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2. A Variety of Cost Curves 2.3 Thresholding Rankers

From ROC curve to ROL curve IV

More positives than negatives (º> 1/2)
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2. A Variety of Cost Curves 2.3 Thresholding Rankers

From ROC curve to ROL curve V
Expected loss for uniform rate is
2º(1°º)(1°AUC)+º2/2+ (1°º)2/2 =º(1°º)(1°2AUC)+1/2

rate = ! *tpr+(1Ð! )*fpr

acc = ! *tpr+(1Ð! )*(1-fpr)
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2. A Variety of Cost Curves 2.3 Thresholding Rankers

Rate-driven thresholds
Expected loss for uniform skews when setting the rate equal to c is linearly
related to AUC as follows:

L

r d

U (c) =º(1°º)(1°2AUC)+1/3

This vindicates the use of AUC as a performance measure in classification and
provides an answer to David Hand’s critique.

The rate-driven threshold choice method can probably still be improved as for
uniform c it leads to an expected rate of 1/2, whereas it makes more sense to
set thresholds such that the expected rate is º.
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2. A Variety of Cost Curves 2.3 Thresholding Rankers

Rate-driven cost curve
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Figure: (Left) Empirical ROC curve. (Right) Rate-uniform cost curve in blue and
rate-driven cost curve in green. The rate-driven threshold choice method is able to take
advantage of knowing the operating condition, leading to a lower expected loss; the area
between the two curves is 1/6.
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2. A Variety of Cost Curves 2.3 Thresholding Rankers

Brier curve and rate-driven cost curve
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Figure: (Left) Brier curve in violet versus rate-driven curve in red . (Right) If scores are
evenly spaced the two methods select the same thresholds – in the limit the area under
the two curves is the same, which establishes the first known connection between Brier
score and AUC.
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3. Classifier Calibration and Alternative Loss Functions
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3. Classifier Calibration and Alternative Loss Functions 3.1 Calibrating for Accuracy

A general view of classifier calibration

Definition
Classifier scores are well-calibrated for performance measure Q and context C if

t the threshold 1/2 is Q-optimal in context C ;

t more generally, the threshold c is Q-optimal in context C

0, where c is the
context change from C to C

0.

Example
True posterior probabilities are well-calibrated for accuracy, given the class prior
as context.
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3. Classifier Calibration and Alternative Loss Functions 3.1 Calibrating for Accuracy

Example (º= 1/2)

1

A

B 2+ 8-

6+ 1- 2+ 1-

p=1/7 p=1/3

p=4/5

6+

1-

2+
1-

2+
8-
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3. Classifier Calibration and Alternative Loss Functions 3.1 Calibrating for Accuracy

Example (º= 1/3)

2

p=1/4 p=1/2

p=8/9

6+

2+

2+

2-

2-

16-A

B 2+ 16-

6+ 2- 2+ 2-
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3. Classifier Calibration and Alternative Loss Functions 3.1 Calibrating for Accuracy

Trading off true and false positive rate
The results so far are derived using an accuracy-based loss function:

Q(t ;º,b,c) = b {cº(1°F0(t ))+ (1° c)(1°º)F1(t )}

Setting this equal to some constant q and solving for F0 gives the equation for an
accuracy-based loss isometric (line of constant loss in ROC space):

F0(q ;º,b,c) = 1°º
º

1° c

c

F1(q ;º,b,c)+1° q/b

cº

These isometrics have constant slope 1°º
º

1°c

c

. The ROC curve has slope
f0(t )/ f1(t ) which at an optimal point is equal to the slope of the isometric, from
which we derive

c = (1°º) f1(t )
º f0(t )+ (1°º) f1(t )

This is therefore the accuracy-calibrated score of the classifier.
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3. Classifier Calibration and Alternative Loss Functions 3.2 Changing the Performance Measure to F-Measure

The F-measure and its isometrics I

The F-measure has been introduced as an alternative to accuracy in order to
deal with situations with many more negatives than positives but true negatives
do not add value.

FM , TP

TP+ (FP+FN)/2
= 2

1/prec+1/rec

= 2prec · rec

prec+ rec

In terms of true and false positive rate the corresponding loss is then

FQ(t ) = º(1°F0(t ))+ (1°º)F1(t )
2ºF0(t )+º(1°F0(t ))+ (1°º)F1(t )

F-measure isometrics in ROC space are straight lines with varying slope, rotating
around the (virtual) point (F1 =°º/(1°º),F0 = 0).
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3. Classifier Calibration and Alternative Loss Functions 3.2 Changing the Performance Measure to F-Measure

The F-measure and its isometrics II

Incorporating a skew parameter c as before, the F-measure loss can be
expressed as

FQ(t ;c) , cº(1°F0(t ))+ (1° c)(1°º)F1(t )
ºF0(t )+ cº(1°F0(t ))+ (1° c)(1°º)F1(t )

Setting this equal to some value q and solving for F0 gives the equation of an
F-measure isometric:

F0(q ;c) = 1°º
º

(1° c)(1°q)
c + (1° c)q

F1(q ;c)+ c(1°q)
c + (1° c)q

We see that the slope of an F-measure isometric depends on the loss q : the
added value of an increased true positive rate or a decreased false positive rate
is not constant throughout ROC space, as with accuracy-based loss.
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3. Classifier Calibration and Alternative Loss Functions 3.2 Changing the Performance Measure to F-Measure

The F-measure and its isometrics III
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Figure: Example empirical ROC curve with F-measure isometrics. The ROC-convex hull
consists of the seven points indicated in red . There are 10 positives and 90 negatives so
the isometrics rotate around F1 =°1/9. From top to bottom the F-measure values follow
the harmonic series 1 (through ROC heaven), 1/2, 1/3, 1/4 and 1/5. The solid isometric
corresponds to the default all-positive classifier.
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3. Classifier Calibration and Alternative Loss Functions 3.3 FROC Curves and F-Cost Curves

FROC curves I

0 1 2 3 4 5 6 7 8 9
0
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9

Figure: FROC plot with G

y

= 1/prec°1 = FP/TP on the y-axis and
G

x

= 1/rec°1 = FN/TP on the x-axis. FROC heaven is in the origin and F-measure
isometrics are parallel lines with slope °1.
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3. Classifier Calibration and Alternative Loss Functions 3.3 FROC Curves and F-Cost Curves

FROC curves II

FROC isometrics are given by

G

x

+G

y

= 1
rec

°1+ 1
prec

°1 = 2
FM

°2 = 2
FQ

1°FQ

The loss on the right is a monotonic transformation of FQ, similar to a
transformation of probabilities into odds.

We can incorporate skews c as follows:

2
FQ

1°FQ

= 2
cº(1°F0)+ (1° c)(1°º)F1

ºF0
= 2cG

x

+2(1° c)G
y

from which we see that FQ isometrics have slope °c/(1° c).
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3. Classifier Calibration and Alternative Loss Functions 3.3 FROC Curves and F-Cost Curves

F-cost curves
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Figure: (Left) Accuracy-based cost lines. The x-axis shows c and the y-axis shows
accuracy-based loss.
(Right) Cost lines for F-measure loss. The y-axis shows 2FQ/(1°FQ). We can see that
the optimal operating points are chosen for lower values of c.
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3. Classifier Calibration and Alternative Loss Functions 3.4 Examples

Scores calibrated for F-measure (º= 1/2)

3

A

B 2+ 8-

6+ 1- 2+ 1-

s=0 s=1/6

s=3/4

(-1/5,0)(-3,0)⇠ (-1,0)
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3. Classifier Calibration and Alternative Loss Functions 3.4 Examples

Scores calibrated for F-measure (º= 1/6)

4

s=0 s=1/2

s=15/16

(-1/5,0)(-3,0)! (-1,0)

A

B 2+ 40-

6+ 5- 2+ 5-
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3. Classifier Calibration and Alternative Loss Functions 3.4 Examples

Scores calibrated for F-measure (º= 3/4)

5

s=0 s=1/16

s=1/2

(-1/5,0)(-3,0)! (-1,0)

A

B 6+ 8-

18+ 1- 6+ 1-
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4. Summary and Conclusions
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4. Summary and Conclusions

Concluding remarks

Apples and oranges
Expected classification loss is a convenient ‘common currency’ for model
evaluation and selection.

Calibration
Classification models become more versatile when they are easily adapted to
operating context changes.

Changing the loss function
Calibration is somewhat more involved but still possible for F-measure.

t Open problem: probabilistic interpretation of F-calibrated scores
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